Question Number	Scheme	M	larks	
1	T (a) R (\rightarrow): $T \cos 60 = 50 \cos 30$	M1	A1	
	$T = 86.6 \mathrm{N}$		A1 (3)	
	(b) $R(\uparrow)$: $W = 50 \sin 30 + T \cos 30$	M1	A1	
	= <u>100 N</u>		A1 (3	
	or R (to <i>BC</i>): $W \cos 60 = 50$	M1	A1	
	$W = 100 \mathrm{N}$		A1 (3	
	 (a) M1 for a valid equation in T only Treat use of tan 30/60 (e.g. tan 30 = T/50) as invalid equation unless there is a triangle of Forces (b) M1 for a valid equation involving W (and T if necessary) 			
	for first A1 in (i), allow for using their T (i.e. effectively f.t.) Accept each answer as awrt.			

Question Number	Scheme	Marks
2	(a) $v = u + at'$: $9.5 = 5 + 1.5a \implies a = 3$	M1 A1 ↓
	Hence $v^2 = 5^2 + 2 \times 3 \times 24$	M1
	$= 169 \implies v = 13 \text{ m s}^{-1} \text{ (*)}$	A1 (4)
	(b) $I = mv - mu' : -30 = 2(v - 13) \Rightarrow v = (-) 2 \text{ m s}^{-1}$	M1 A1
	In direction of CA (o.e.)	A1 (3)
	(a) 2 nd M1 for equation in v (and numbers) only Final A1 is cso	
	(b) M1 for valid impulse = momentum change equn with 3 non-zero terms includir A1 for '30' and '13' with same sign A1 for direction as 'CB' or anything convincing!	ng '30' and '13'
	NB both A's in (b) are cao = cso!	

Question Number	Scheme	Marks
3		M1 A1 ↓ M1
	$\Rightarrow v = \frac{1}{5}u \qquad (*)$	A1 cso (4)
	(b) $10 = 2a \implies a = 5 \text{ m s}^{-2}$	B1
	$0 = \frac{1}{25}u^2 - 2 \times 5 \times 1.6$	M1 A1√ ↓
	$\rightarrow u = 20 \text{ m s}^{-1}$	M1 A1 (5)
	(a) 1 st M1 for valid CLM equn 2 nd M1 for correct equn for 'v' and 'w' and solving for v or w. Final A1 is cso (dropping u and reinserting loses last A1)	
	(b) Allow B1 for $a = \pm 5$ M1 for using ' $v^2 = u^2 + 2as$ ' with $v = 0$ and with a value for a A1 f.t. on their a (provided this is not g), but signs must be correct	
	SC For using u instead of $u/5$ ($\rightarrow u = 4$), allow M1 A0 M0.	
	Energy: $\frac{1}{2} \times 2 \times (u/5)^2 = 10 \times 1.6$ M1 A1 A1	
	$\rightarrow u = 20$ dep M1 A1	

Scheme	Marks	
(a) $M(D)$: $20g \times 1.5 + 10g \times 1 = R_B \times 3$	M1 A1 ↓	
$\Rightarrow R_B = 40g/3 \approx 131 \text{ or } 130 \text{ N}$	M1 A1 (4)	
[NB For moments about another point, allow M1 A1 for moments equation dimensionally correct and with correct number of terms; second M1 is for complete method to find R_{B} .]		
(b) $R(\uparrow)$: $R_D + 40g/3 = 20g + 10g$	M1 A1√	
\Rightarrow $R_D = 50g/3 \approx 163 \text{ or } 160 \text{ N}$	A1 (3)	
or M(B): $20g \times 1.5 + 10g \times 2 = R_D \times 3$	M1 A1	
\Rightarrow $R_D = 50g/3 \approx 163 \text{ or } 160 \text{ N}$	A1 (3)	
[NB For moments about another point, allow M1 for a complete method to find R_D equation for R_D .]	, A1 for a correct	
(c) $R_B = 0$	M1	
$M(D)$: $20g \times x = 10g \times 1$	M1 A1	
$x = DF = \underline{0.5 \text{ m}}$	A1 (4)	
For weight/mass confusion, A0 A0 in (a) but allow f.t. in (b) (ans 50/3 = 16.7)		
General rule of deducting max. 1 per question for > 3 s.f		
(c) 2 nd M1: must have correct no. of non=zero terms, and equation in x only If use value(s) of R's from (a) or (b): M0.		
	(a) $M(D)$: $20g \times 1.5 + 10g \times 1 = R_B \times 3$ $\Rightarrow R_B = \frac{40g/3}{40g/3} \approx 131 \text{ or } 130 \text{ N}$ [NB For moments about another point, allow M1 A1 for moments equation dim correct and with correct number of terms; second M1 is for complete method to find (b) $R(\uparrow)$: $R_D + 40g/3 = 20g + 10g$ $\Rightarrow R_D = \frac{50g/3}{3} \approx 163 \text{ or } 160 \text{ N}$ or $M(B)$: $20g \times 1.5 + 10g \times 2 = R_D \times 3$ $\Rightarrow R_D = \frac{50g/3}{3} \approx 163 \text{ or } 160 \text{ N}$ [NB For moments about another point, allow M1 for a complete method to find R_D equation for R_D .] (c) $R_B = 0$ $M(D)$: $20g \times x = 10g \times 1$ $x = DF = 0.5 \text{ m}$ For weight/mass confusion, A0 A0 in (a) but allow f.t. in (b) (ans $50/3 = 16.7$) General rule of deducting max. 1 per question for > 3 s.f (c) $2^{nd} M1$: must have correct no. of non=zero terms, and equation in x only	

Question Number	Scheme	Ma	arks
5	(a) $R = 400g \cos 15^{\circ} (\approx 3786 \text{ N})$	E	31
	F = 0.2R used	E	31
	$7 + 0.2R = 400g \sin 15^{\circ}$	M1	A1
	T ≈ <u>257 or 260 N</u>	↓ M1	A1 (6)
	(b) $400g \sin 15^{\circ} - 0.2 \times 400g \cos 15^{\circ} = 400a$	M1	A1
	$a = 0.643(\dots)$		A1
	$50 = \frac{1}{2} \times 0.643 \times t^2$	M1	A1√
	t = 12.5 or 12 s		A1 (6)
	General rule again about > 3 sf		
	Weight/mass confusion: treat as MR [\rightarrow T = 26.3/26; a = 0.0656; t = 39(.0)]		
	(b) Allow $a = 0.64$		
	(Final M1 not dependent but requires an attempt to find an a which is not assumed to	be g)	

Question Number	Scheme	Marks
6	(a) Direction of $\mathbf{v} = (7\mathbf{i} - 7.5\mathbf{j}) - (4\mathbf{i} - 6\mathbf{j}) = 3\mathbf{i} - 1.5\mathbf{j}$	M1 ↓
	$\tan \theta = \frac{1.5}{3} = 0.5 \Rightarrow \theta = 26.565$	M1 A1
	Bearing = <u>117</u> (accept awrt)	A1 (4)
	(b) $\mathbf{v} = (3\mathbf{i} - 1.5\mathbf{j}) \div \frac{3}{4} = 4\mathbf{i} - 2\mathbf{j}$	B1
	s = (4i - 6j) + t(4i - 2j)	M1 A1√ (3)
	(c) At 1015 s = $(4\mathbf{i} - 6\mathbf{j}) + \frac{5}{4}(4\mathbf{i} - 2\mathbf{j})$ (= $9\mathbf{i} - 8.5\mathbf{j}$)	M1 A1
	$\mathbf{m} = 0.25 (p\mathbf{i} + q\mathbf{j})$	B1 ↓
	$s = m \Rightarrow p = 36, q = -34$	M1 A1, A1 (6)
	(a) Forming direction for v can be either way round. M1 for tan = 'i/j' or 'j/i' A1 for 26.6 or 63.4 (awrt) from a correct direction for v A1 cao	
	(b) Allow B1 for correct vector for v wherever seen (e.g. in (a))	
	(c) line 1: or $(7\mathbf{i} - 7.5\mathbf{j}) + \frac{1}{2}(4\mathbf{i} - 2\mathbf{j}) = \dots$ 1^{st} M1 allow for a valid attempt with a value of t. 2^{nd} M1 using $\mathbf{s} = \mathbf{m}$ and equating at least one coefficient	

Question Number	Scheme	Marks
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(a) $F_1 = \frac{2}{7} \times 4g$ (= 11.2) or $F_2 = \frac{2}{7} \times 6g$ (= 16.8)	B1
	System: $40 - \frac{2}{7} \times 4g - \frac{2}{7} \times 6g = 10a$ (equn in <i>a</i> and not <i>T</i>)	M1 A1
	$\Rightarrow \underline{a = 1.2 \text{ m s}^{-2}} \qquad (*)$	A1 (4)
	(b) $P: T - \frac{8}{7}g = 4 \times 1.2$ or $Q: 40 - T - \frac{12}{7}g = 6 \times 1.2$	M1 A1
	$\Rightarrow T = 16 \text{ N}$	A1
	(c) Accelerations of P and Q are same	(3) B1
	(d) $v = 1.2 \times 7 = 8.4$	(1) B1
	P: $(-) \frac{8}{7}g = 4a \implies a = (-) \frac{2}{7}g = 2.8$	M1 A1 ↓
	$0 = 8.4 - 2.8t \Rightarrow \underline{t = 3 \text{ s}}$ (*)	M1 A1 (5)
	(e) Q: $40 - \frac{12}{7} g = 6a$ ($\Rightarrow a \approx 3.867$)	M1 A1
	$v = 8.4 + 3.867 \times 3 = 20 \text{ m s}^{-1}$	↓ M1 A1
	 (a) 1st A1 requires values for the F's. (Allow M1 with just 'F's) (b) Allow M1 A1 for one of these equations wherever seen (e.g. in (a)) 	(4)
	(c) extra statement about tensions being equal (with the correct ans): B0	
	(d) allow verification	
	No g: allow 1 st M1 in each of parts (a), (b), (d), (e) as f.t. but other A's are cao	